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Introduction
Arterial Spin Labeling (ASL)[1,2] is a remarkable and useful approach to the measurement of
perfusion, sometimes referred to as regional blood flow.  As will become apparent below,
measurement of blood flow requires observations of the transport of a tracer. ASL is unique in that
the tracer is the naturally occurring water in arterial blood, which is labeled by the application of
magnetic fields. While the generation of an image that is fairly representative of perfusion requires
relatively simple mathematics, more complex modeling and interpretation can assess limitations to the
simplest model, provide more precise quantitative values, and potentially provide additional
physiologic information.

The Simple Model
The ASL experiment involves the acquisition of multiple images with different labeling of arterial
water. Most commonly, just two images, a labeled image and a control image, without labeling, are
acquired and subtracted. Labeling is almost always performed by affecting the longitudinal
magnetization. Mz. of the blood outside the imaged region. While novel forms of labeling include

velocity selective labeling of blood already in
the slice[3,4] or labeling of transverse
magnetization by adiabatic half passage[5], the
following discussion will be restricted to spatially
selective labeling of Mz. The evolution of signal
in a small region of tissue is given by the
modified Bloch equation[1]
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respectively, f is the flow, or perfusion, in units of ml blood per s per gram of tissue, and ρ is the tissue
density in g/ml. In this equation, the arterial and venous magnetization are those in the small vessels
feeding the small region of tissue. Because of diffusion between the tissue and the capillaries and
venules, the venous magnetization per water molecule is typically assumed equal to that in tissue.
This freely diffusible tracer assumption is probably pretty good in most tissues, but is somewhat
suspect in the brain, as only approximately 80% of water is extracted into the tissue in passage
through the tight barriers of the cerebral microvasculature[6]. Defining the water content in one ml of
blood or tissue as ρwb and ρwt, we can rewrite the Bloch equation as
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where we have defined the tissue-blood partition coefficient, λ, on the right. Consider the numerically
simplest ASL study, the idealized steady state continuous labeling method[1]. In this approach, the
arterial magnetization is maintained at a constant of either the equilibrium magnetization, Ma

0, for the
control or – Ma

0 for the labeling. Over time a steady state is reached and the derivative goes to zero.
Then the difference between the control and label magnetization is given by[1,7]
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Since the image intensity is proportional to M, flow can be directly calculated from the images if T1
and λ are known, assumed, or measured. Another mathematically simple labeling scheme is where
labeling of the form – 2Ma

0 exp(-t/T1t)+ Ma
0  is applied for time from 0 to TI corresponding to pulsed

inversion of arterial blood for the label[8,9]. This gives a difference in magnetization at time TI of
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where similar T1’s of tissue and blood were assumed in the approximation on the right. Because ASL
cannot be performed with labeling at the arteriole in most practical situations, additional complications
arise.

Modeling of Arterial Transit
In practice, labeling is performed some distance away from the feeding arterioles because
imperfections in RF pulses, magnetization transfer effects, and motion would introduce errors with
close labeling. In many human tissues, the time required to move from the labeling region to the
tissue is comparable to or longer than the T1 of blood. Failure to account for decay of the label
during transit would give an erroneous measure of flow. The arteriolar labeling in the presence of a

transit delay, δ, is related to the large vessel labeling by[7] 

€ 

Marteriole t( ) = Martery t −δ( ) exp − δ
T1b

 

 
 

 

 
 .

This expression shows that there are two uncertainties about the contribution of arterial blood labeled
at a certain time. The first is whether the label actually reaches the arteriole before imaging and the
second is how much the label has decayed in transit if it did reach the arteriole. If T1 is similar or the
same in tissue and blood, then the second problem is minimal because the decay of the label
depends only on time and not where the label is located. The first uncertainty, whether the label has
reached the arteriole or not, can be eliminated by stopping all labeling and waiting sufficiently long,
based on experience or expectation, that all of the label has entered the arterioles[7,10]. If one
employs the transit correction above and a wait w, longer than δ, after labeling, then the idealized
steady state ASL equations become[7]
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If w is longer than δ, then the dependence on δ is small unless there is a big difference between the
blood and tissue T1. If w is too short, then there may be stronger dependence on δ as well as an
additional complication, the presence of substantial labeled blood in larger arteries. Arteries longer
than the voxel size will degrade spatial resolution if filled with labeled blood. These vessels must be
suppressed by longer delay or flow dephasing gradients[1,11] to avoid quantification errors.
However, vessels comparable in size to the voxel or smaller need not be a major problem.

Consider the case of a tissue with equal T1 to blood. Once the blood has entered an artery smaller
than the voxel size, the signal observed is independent of whether the blood has passed through
capillaries into tissue or not. One can make a two compartment model[7] with a vascular compartment



containing small arteries, arterioles and capillaries, and a tissue compartment. Assuming arrival of the
label at the vascular compartment at a time δa and instantaneous exchange at the end of the
capillary at a second time δt, one can calculate the signal as a function of flow by integration of the
Bloch equations.
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Measurements of the ASL difference signal for a range of different wait times can be fit to a
model[12,13], as above, for the signal as a function of delay. For most tissues, the shape of the
curve is not sufficient to differentiate δa and δt. Instead, fitting usually just provides a measure of δa.
However, if flow dephasing gradients are employed to eliminate most vascular signal, a separate fit of
δt can be performed. It has recently been suggested that the combination of δa, flow and δt
measurement permits the calculation of the arterial blood volume[13].

A limitation to all of these modeling techniques is the assumption of a single constant delay time for
all blood entering a voxel. Pulsatile flow over the cardiac cycle, multiple flow paths in borderzone
areas, and simply laminar flow create a distribution of transit times. In the case of laminar flow without
radial mixing, the distribution of transit times is given by[12]
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for δ > δmin  This model serves as an extreme for non plug flow. Fitting with this model

produces significantly different transit times and curves shapes than for a constant transit delay.

The instantaneous and complete exchange of water with tissue in the capillaries has been
questioned and modeled. One approach has been to assume a pool of well-mixed arterial blood in
exchange with a tissue compartment[14]. An alternative approach is to model the entire capillary
exchange process[15]. It is challenging to incorporate larger vessel delay effects and diffusive
exchange processes in a single model.

Water density and relaxation effects
Previously we’ve assumed that the tissue-blood partition coefficient is known and that the signal is
proportional to the magnetization density. In practice, the partition coefficient is not known and must
be assumed[16]. The partition coefficient includes the tissue water density, something which those
experienced with MR imaging know is not particularly uniform in tissue. If the sensitivity of the scanner
is uniform, i.e. a uniform transmit and receive coil are used, one can use traditional methods for
generating maps of relative water density[17]. Very long TR images or simultaneous T1 quantification
can be used. Since tissue T1 is generally required in the quantification of flow, simultaneous T1 and
proton density analysis is advantageous. To determine absolute water density, a region of fluid, such
as CSF, can be used as a reference. However, one can show that the tissue water density in the
partition coefficient cancels the water density contribution to Mt in flow quantification. Hence all that is
really required is an estimate of the sensitivity to pure water at each voxel. In situations where
sensitivity is nonuniform, as with array coils, a model for the sensitivity is required in order to
accurately measure absolute blood flow. Techniques for coil sensitivity mapping have been rapidly
advancing with the implementation of parallel imaging. In principle, the density of tissue is required to
report flow in units of ml/gm/s or similar units. However, there is little intrinsic interest in the difference
between flow in units of ml/gm/s and the related quantity in ml/ml/s.

An additional assumption of quantification is that the signal from the water depends only on the
magnetization. Short T2 or T2* can cause attenuation of the signal which may not be mirrored in the
coil sensitivity measurement[18]. When blood signal is not attenuated with dephasing gradients,
different T2 and T2* in blood and tissue could cause deviations from the quantification theory. While
transverse relaxation can be measured and modeled, using sequences with limited sensitivity to T2
and T2* is certainly preferable.



Measurement of T1 in tissue is frequently performed for ASL quantification, but T1 in blood is usually
assumed based on literature measurements. Given the strong, exponential dependence of the ASL
signal on blood T1, relatively small errors in blood T1 can cause large effects on the perfusion
measurement. T1 of blood is sensitive to the hematocrit[19], as is perfusion itself[20], so in-vivo
measurement of T1 may become necessary. Even with an in-vivo measurement, complications remain
because of the lower microvascular hematocrit, and the potential for regional variations in
hematocrit[21].

Time Series Analysis
While not always the case, ASL is typically performed with single-shot imaging, such as echoplanar,
that acquires images in a few seconds. Attaining sufficient SNR, however, requires repeated
scanning and typically the label and control images are interleaved in time. In many applications,
motion or other nonthermal noise is a major source of variance in the image time series. While these
noise sources can be substantially reduced by acquisition with background suppression[22,23,24],
post-processing techniques such as motion correction, principal component analysis[25] and
independent component analysis[26] that are in wide use for BOLD fMRI can also find application in
ASL. When ASL itself is used for activation studies, the techniques of BOLD are complicated by the
introduction of control images at various times during the sequence[27].

Applications of ASL MRI
ASL is advantageous in several ways: it uses no external contrast, it permits a reproducible and
reasonably accurate measure of absolute blood flow, it is not inherently sensitive to large vessels,
and with the appropriate sequence, it is insensitive to susceptibility induced magnetic field variations.
For all of these reasons, it has found application in brain activation studies, animal investigations,
and clinical studies of cerebral and body abnormalities. These applications are reviewed in a
separate syllabus contribution by this author, for the Advanced Brain MR Imaging course.
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